Exercices TRIGO

11^{ème} Sciences 2020/2021 **LPMT**

EXERCICE1

Donner la mesure en radians de chaque angle suivant :

$$30^{\circ}$$
 -45° 70° 135°

Donner la mesure en degrés de chaque angle suivant : 2.

$$\frac{\pi}{2}$$
rad $\frac{5\pi}{6}$ rad $-\frac{4\pi}{3}$ rad $1,5\pi$ rad

Construire un cercle trigonométrique et placer les points images des nombres réels suivants

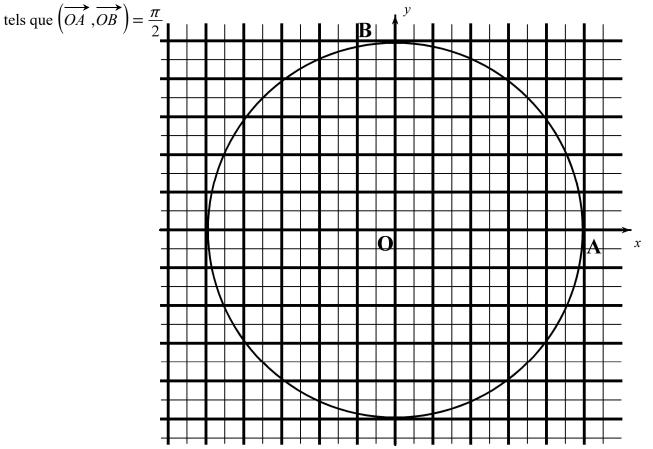
$$\frac{\pi}{4} \qquad \frac{5\pi}{6} \qquad \frac{2\pi}{5} \qquad \frac{-\pi}{3} \qquad \frac{-5\pi}{4} \qquad \frac{2011\pi}{2}$$

Compléter le tableau ci-dessous en donnant la mesure principale correspondante :

$\frac{21\pi}{2}$	$\frac{-19\pi}{6}$	$\frac{37\pi}{4}$	$\frac{-29\pi}{9}$	$\frac{100\pi}{3}$	$\frac{-47\pi}{8}$	50

EXERCICE2

I°) Le cercle ci-dessous est un cercle trigonométrique de centre O; A et B sont deux points de ce cercle



Placer sur ce cercle les points C, D, E, F, G, H, I, J et K tels que :
$$(\overrightarrow{OA}, \overrightarrow{OC}) = \frac{\pi}{6} ? (\overrightarrow{OA}, \overrightarrow{OD}) = \frac{\pi}{4}$$
,

$$\left(\overrightarrow{OA},\overrightarrow{OE}\right) = \frac{\pi}{3} \quad , \left(\overrightarrow{OA},\overrightarrow{OE}\right) = \frac{\pi}{3} \quad , \left(\overrightarrow{OA},\overrightarrow{OF}\right) = \frac{2\pi}{2} \; , \left(\overrightarrow{OA},\overrightarrow{OG}\right) = \pi \quad , \left(\overrightarrow{OA},\overrightarrow{OH}\right) = -\frac{3\pi}{4} \; ,$$

$$(\overrightarrow{OA}, \overrightarrow{OI}) = -\frac{\pi}{2}$$
 et $(\overrightarrow{OA}, \overrightarrow{OD}) = -\frac{\pi}{6}$

Le plan est rapporté au repère orthonormal $(O; \overrightarrow{OA}, \overrightarrow{OB})$

On dit que c'est un repère orthonormal direct; on exprime par là, le fait que $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{2}$ $\left(\text{ et non }-\frac{\pi}{2}\right)$

II°) Soit (C) un cercle de centre A et B un point de (C)

1) Construire les points C, D, E et F du cercle (C) tels que :

$$(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3}$$
; $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{3\pi}{4}$; $(\overrightarrow{AB}, \overrightarrow{AE}) = \frac{7\pi}{6}$; $(\overrightarrow{AB}, \overrightarrow{AF}) = -\frac{3\pi}{4}$

2) Déterminer une mesure puis la mesure principale de chacun des angles orientés

$$(\overrightarrow{AC}, \overrightarrow{AE})$$
 ; $(\overrightarrow{AD}, \overrightarrow{AF})$; $(\overrightarrow{AF}, \overrightarrow{AC})$; $(\overrightarrow{AF}, \overrightarrow{AE})$

EXERCICE3:

1) Sachant que
$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

Calculer
$$\cos\left(\frac{\pi}{12}\right)$$
, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$

En déduire
$$\cos\left(-\frac{\pi}{12}\right)$$
, $\cos\left(\frac{11\pi}{12}\right)$, $\cos\left(\frac{13\pi}{12}\right)$, $\cos\left(\frac{35\pi}{12}\right)$, $\sin\left(-\frac{\pi}{12}\right)$, $\sin\left(\frac{11\pi}{12}\right)$, $\sin\left(\frac{13\pi}{12}\right)$, $\sin\left(\frac{35\pi}{12}\right)$

$$\sin\left(\frac{35\pi}{12}\right)$$

2) Calculer

i.
$$A = \cos\frac{\pi}{8} + \cos\frac{3\pi}{8} + \cos\frac{5\pi}{8} + \cos\frac{7\pi}{8}$$

ii.
$$B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$$

iii. On donne
$$E = \cos^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{4} + \cos^2 \frac{5\pi}{12} + \cos^2 \frac{7\pi}{12} + \cos^2 \frac{3\pi}{4} + \cos^2 \frac{11\pi}{12}$$

Montrer que E est un entier naturel.

EXERCICE4: Le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$

1) Construire les points A, B et C de coordonnées polaires respectives $\left(2, \frac{\pi}{6}\right)$, $\left(\frac{3}{2}, -\frac{\pi}{4}\right)$ et $\left(3, \frac{\pi}{6}\right)$ et calculer les abscisses et les ordonnées de ces points.

2) Construire les points D(-2; -2) E(-3; 0) et $F(-\sqrt{3}; 1)$

Quelles sont les coordonnées polaires de ces points ?

EXERCICE 5:

- 1) Exprimer $\cos(3x)$ et $\cos(4x)$ en fonction de $\cos(x)$ uniquement.
- 2) Exprimer $\sin(3x)$ en fonction de $\sin(x)$ uniquement.
- 3) Exprimer tan(3x) en fonction de tan(x) uniquement

EXERCICE 6: I°) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$\sin(x) = 0$$
, 2) $\sin(x) = 1$, 3) $\sin(x) = -1$, 4) $\cos(x) = 1$ 5) $\cos(x) = -1$, 6) $\cos(x) = 0$,

7)
$$\tan(x) = 0, 8$$
) $\sin(2x) = -\frac{\sqrt{3}}{2}$; 9) $\sin(2x) = \sin(3x)$; 10) $\sin(2x) = \cos(3x)$; 11) $\cos(2x) = \cos^2(x)$

12)
$$\cos(x) + \sin(x) = 1$$
; 13) $\sqrt{3}\cos(x) - \sin(x) = 3$; 14) $\sin(x) + \sin(2x) + \sin(3x) = 0$; 15) $\cos(x) + \sin(3x) = 0$; 15) $\cos(x) + \sin(x) = 1$

$$x = \frac{1}{2}$$
; 16) $\sin x = \frac{\sqrt{2}}{2}$ 17) $\cos x = -\frac{\sqrt{2}}{2}$ 18) $\sin x = -\frac{1}{2}$

II°) 1°) Résoudre dans
$$\left[-\frac{\pi}{2}\frac{3\pi}{2}\right]$$
 les équations suivants : $\sin\left(2x + \frac{\pi}{3}\right) = 0$ $\cos\left(x + \frac{3\pi}{4}\right)$

 2°) Résoudre dans $\mathbb R$ puis dans $[-\pi,\pi]$ les équations suivants :

$$\cos\frac{x}{2} = 0; \qquad \cos\left(3x\right) = \cos\left(x + \frac{\pi}{6}\right); \qquad \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

III°) Déterminer l'angle α en radians, dans les cas suivants :

$$1^{\circ}) \begin{cases} \cos \alpha = \frac{1}{2} \\ \sin \alpha = \frac{\sqrt{3}}{2} \end{cases}; \quad 2^{\circ}) \begin{cases} \cos \alpha = \frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{1}{2} \end{cases}; \quad 3^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = \frac{1}{2} \end{cases}; \quad 4^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{2}}{2} \\ \sin \alpha = \frac{\sqrt{2}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = -\frac{\sqrt{2}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = -\frac{\sqrt{2}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = 0 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = -\frac{\sqrt{2}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = 0 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = -\frac{1}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = 0 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{1}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -\frac{1}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \begin{cases} \cos \alpha = -\frac{\sqrt{3}}{2} \\ \sin \alpha = -\frac{\sqrt{3}}{2} \end{cases}; \quad 5^{\circ}) \end{cases}; \quad 5^{\circ}$$

EXERCICE 7:

I°) Démontrer les identités suivante

1°)
$$\tan x = \frac{\sin(2x)}{1 + \cos(2x)}$$
 2°) $\frac{\sin x + \sin(5x)}{\cos x + \cos(5x)} = \tan(x)$

3°)
$$\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)} = \tan(y)$$
 4°) $\frac{\sin(x) + \sin(3x) + \sin(5x)}{\cos(x + \cos(3x) + \cos(5x))} = \tan(3x)$

II°) 1°) Donner l'expression factorisée de

a)
$$A = \sin(5x) + \sin 3x$$
; b) $B = \sin x - \sin 5x$; c) $C = \cos 4x - \cos 6x$

d)
$$D = \cos 9x + \cos 3x$$
; e) $E = \sin 4x - \sin 2x$; f) $F = \cos 11x + \cos 3x$

2°) Factoriser f(x) puis en déduire une résolution dans \mathbb{R} de l'équation f(x) = 0 dans les cas suivants : $f(x) = \sin 3x + \sin x + 2 \sin 2x$; $f(x) = \cos 3x + \cos x + 2 \cos 2x$

EXERCICE 8:

- 1°) Résoudre dans \mathbb{R} les équations suivantes d'inconnue x puis placer sur le cercle trigonométrique les points images des solutions.
- a) $2\cos(x) 1 = 0$; b) $2\sin(2x) \sqrt{3} = 0$; c) vérifier que $4 + 2\sqrt{3} = (\sqrt{3} + 1)^2$ puis résoudre $-4\sin^2(x) 2(\sqrt{3} 1)\cos(x) + 4 \sqrt{3} = 0$

2°) a) Calculer
$$\left(\sqrt{3} + \sqrt{2}\right)^2$$
 et résoudre dans \mathbb{R} l'équation : $4x^2 + 2\left(\sqrt{3} - \sqrt{2}\right)x - \sqrt{6} = 0$

b) En déduire la résolution dans $[0; 2\pi]$ de : $-4\sin^2(y) + 2(\sqrt{3} - \sqrt{2})\cos(y) + 4 - \sqrt{6} = 0$.

Placer les points images des solutions sur le cercle trigonométrique.

23°) Résoudre
$$(x; y) \in [0; 2\pi] \times [0; 2\pi]$$
 le système
$$\begin{cases} x - y = \frac{\pi}{4} \\ cos(x) cos(y) = \frac{\sqrt{2}}{4} \end{cases}$$

4°) Résoudre
$$(x; y) \in [0; \pi] \times [0; \pi]$$
 le système
$$\begin{cases} cos(x + y) = \frac{1}{2} \\ cos(x - y) = \frac{\sqrt{3}}{2} \end{cases}$$

EXERCICE9:

I°) Résoudre les équations suivantes

$$a^{\circ}$$
) $x \in \mathbb{R}$, $\cos(x) + \sin(x) = \sqrt{2}$; b°) $x \in [-2\pi; 2\pi]$, $\sin^2(2x) - 4\sin(2x) + 3 = 0$

$$c^{\circ}$$
) $x \in \mathbb{R}$, $-2(\sqrt{2}-1)\cos x - 4\cos^2 x + \sqrt{2} = 0$; d°) $x \in \mathbb{R}$, $\cos(5x) - \cos(x) = \sin(3x)$

$$e^{\circ}$$
) $x \in [-\pi;\pi]$, $2\sin^2(x) + (2-\sqrt{2})\sin(x) - \sqrt{2} = 0$; f°) $x \in [-2\pi;2\pi]$, $\sin(2x + \frac{\pi}{3}) = 1$

$$g^{\circ}$$
) $x \in [0;2\pi]$, $2\sin^2(x) + 7\cos(x) - 5 = 0$; h°) $x \in \mathbb{R}$, $\cos^2 x - 4\cos x + 3 = 0$

$$i^{\circ}$$
) $x \in \mathbb{R}$, $2\cos(2x)\sin(x) = \sqrt{3}\sin(x)$; j°) $x \in \mathbb{R}$, $\cos(x - \frac{\pi}{6}) = \sin x$

$$k^{\circ}$$
) $x \in \mathbb{R}$, $-\sin x + \sqrt{3}\cos x - 1 = 0$; l°) $x \in [0; 2\pi]$, $\sqrt{2} + 2(\sqrt{2} - 1)\sin x = 4\sin^2(x)$

$$m^{\circ}$$
) $x \in \mathbb{R}$, $2\sin(2x)(\cos^2 x - \sin^2 x) = 2\sqrt{2}\sin(x)\cos(x)$; n°) $x \in \left[-\frac{\pi}{3}; \frac{\pi}{3}\right]$, $tg(2x) = \sqrt{3}$

$$p^{\circ}$$
) $x \in \mathbb{R}$, $\sqrt{3}\cos(x) - 3\sin(x) = \sqrt{6}$; q°) $x \in \mathbb{R}$, $-\cos(x) + \sqrt{3}\sin(x) - \sqrt{2} = 0$

$$r^{\circ}$$
) $x \in \mathbb{R}$, $2\cos x \times \sin x + 4\sin(2x) = 0$; s°) $x \in \mathbb{R}$, $\cos x + \sin x = -1$.

 $\mathbf{H}^{\mathbf{o}}$) Résoudre dans \mathbb{R} , chacune des équations suivantes

a)
$$\sin(2x) - \sqrt{3}\cos(x) = 2$$
; b) $\sin(x) - \sqrt{3}\cos(x) = 0$; c) $\cos(x) + \sqrt{3}\sin(x) = \sqrt{3}$

d)
$$3\sqrt{3}\cos(\pi x) + 3\sin(\pi x) = 0$$
; e) $\cos(3x)\cos(x) = \sin(3x)\sin(x)$

f)
$$\cos(2x)\cos(x) + \sin(2x)\sin(x) = \frac{1}{2}$$
; h) $2\sin(x)\cos(x) + 2\sqrt{3}\cos(x) - \sqrt{3}\tan(x) + 3 = 0$

$$g$$
) $4\sin(x)\cos(x) + 2\sin(x) - 2\cos(x) - 1 = 0$; i) $2\sin(x)\tan(x) - \tan(x) = 1 - 2\sin(x)$

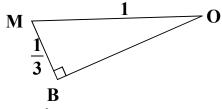
EXERCICE 10:

- I°) 1) Calculer le sinus et le cosinus de l'angle x sachant que $3\sin x + 4\cos x = 5$
 - 2) Résoudre dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ l'inéquation suivante : $\sin(3x) + 1 \cos(2x) \sin(x) > 0$

II°) Les dimensions du triangle OBM sont données sur la figure :

Entourer parmi les données suivantes, celles qui sont correctes

$$OB = \frac{2}{3}$$
 $Sin \ \widehat{BMO} = \frac{1}{3}$ $OB = \frac{2\sqrt{2}}{30}$



$$Sin \ \widehat{BOM} = \frac{1}{3}$$
 $Cos \ \widehat{BOM} = \frac{2}{3}$ $\left(Sin \ \widehat{BOM}\right)^2 + \left(Cos \ \widehat{BOM}\right)^2 = 1$

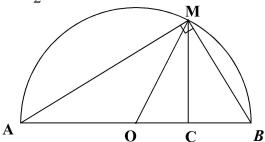
EXERCICE 11:

Sur la figure ci-contre OA = OB = OM = 1 $\widehat{BOM} = \beta$ et $\beta \in]0, \frac{\pi}{2}[$

On pose
$$\widehat{OAM} = \alpha$$

- 1) Montrer que $\beta = 2\alpha$.
- 2) justifier les égalités suivantes:

$$\cos\alpha = \frac{AC}{AM} = \frac{AM}{AB}$$



- 3) Montrer que $AC = 1 + \cos 2\alpha$; exprimer AM en fonction de $\cos \alpha$.
- 4) Démontrer l'égalité suivante : $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$
- 5) Application

Calculer les valeurs exactes de $\cos \frac{\pi}{8}$ et $\cos \frac{\pi}{12}$

EXERCICE 12:

Le plan est rapporté à un repère orthonormé diret $\left(O; \overrightarrow{i} \overrightarrow{j}\right)$. (C) est le cercle trigonométrique de centre O.

- 1) placer sur ce cercle trois points A, B et M tels que $(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{2\pi}{5}$ et $(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{\pi}{5}$
- **2)** Les droites (OB) et (AM) se coupent en N.
- a) Montrer que le triangle OAN et le triangle OMN sont destriangles isocèles.
- **b)** On appelle H, K et L, les projetés orthogonaux respectifs de M sur (OA) et O sur (AN).

Exprimer en fonction de $\cos\frac{\pi}{5}$ ou $\cos\frac{2\pi}{5}$, les distanctes suivantes : OH , ON , AN, OK , AL, AM et AK .

3) En remarquant que AN - AM = 1 et OK + KA = 1, montrer les égalités suivantes :

$$\cos\frac{\pi}{5} - \cos^2\frac{\pi}{5} = \frac{1}{2} \qquad \qquad \cos\frac{\pi}{5} + 2\cos^2\frac{2\pi}{5} = 1$$

- 4) Résoudre le système suivant : $\begin{cases} X Y = \frac{1}{2} \\ X + 2Y^2 = 1 \end{cases}$
- a) En déduire $\cos \frac{\pi}{5}$ et $\cos^2 \frac{\pi}{5}$

b) Compléter le tableau suivant :

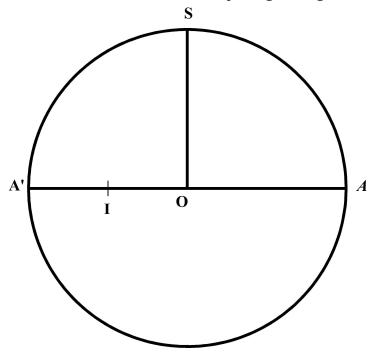
b) description to tubiodu burvaint i											
α	<u>π</u>	2π	3π	4π	6π	7π	8π	9π			
	5	5	5	5	5	5	5	5			
cosα											

5) Sur la figure ci-dessous, OA = 1 et I est le milieu de [OA']

Calculer IS.

Soit T le point de [OA] tel que IT = IS et R le milieu de [OT] calculer OR.

En déduire la construction d'un pentagone régulier.



EXERCICE 13

Résoudre les inéquations suivantes :

1°)
$$x \in [0; 2\pi[, \cos(2x) \le \frac{\sqrt{3}}{2}; 2^{\circ}) \ x \in [0; \pi[, tg(x) \ge \sqrt{3}; 3^{\circ}) \ x \in \mathbb{R}, \sin(\frac{x}{3}) \ge \sin(\frac{3\pi}{4}) \ 4^{\circ})$$

 $x \in \mathbb{R}, 2\cos(2x + \frac{\pi}{4}) \ge 1; \quad 5^{\circ}) \ x \in \mathbb{R}, \sqrt{3}\cos(x) + \sin(x) \ge 1;$
6°) $x \in \mathbb{R}, 4\cos^2(x) - 2(\sqrt{2} + \sqrt{3})\cos(x) + \sqrt{6} \le 0$