

INTERNATIONAL BILINGUAL ACADEMY YAOUNDÉ (IBAY)

ARRETE N: 5536/07/SG/DESG/SDSEPESG of 21 July, 200 ARRETE N: 89/10/MINESEC/SG/ESG/SDSEPEG/SGEPESG of 28 May. 2010

EDUCATION WITH A DIFFERENCE/ENSEIGNER AUTREMENT

Classe	Epreuve de Mathématiques	Séquence nº 3	Coef	Durée
TD	Année 2020/2021		4	3H

PARTIE A: évaluation des ressources (15,5pts)

Exercice 1: 3pts

QCM: Choisir la bonne réponse

1. $\lim_{x\to 0} \frac{(\cos x)^2 - 1}{x}$ est égale à : a)2 ; b) -2 ; c) 0 ; d) 1 1pt

2. L'argument du nombre complexe $z=-3(\cos\frac{\pi}{6}-i\sin\frac{\pi}{6})$ est :

a) $\frac{\pi}{6}$; b) $-\frac{\pi}{6}$; c) $\frac{5\pi}{6}$; d) $-\frac{5\pi}{6}$ 3. A, B, C et D sont les points d'affixes respectives = 1; b=i; c=-1 et d=-i. 1pt

1pt

L'ensemble des points d'affixe z tel que $\frac{z+i}{z+1}$ soit imaginaire pur est :

a)La droite (CD) privée de C;

b) le segment [CD] privé de C;

c)le cercle de diamètre [CD] privé de C;

d) la médiatrice de [AB].

Exercice 2:3,5pts

I/On considère le polynôme $p(z) = z^4 + 17z^2 - 28z + 260$ où z est un nombre complexe.

1-Déterminer deux nombres réels a et b tels que $p(z) = (z^2 + az + b) (z^2 + 4z + 20)$ 0,5pt

2-Résoudre dans C l'équation p(z) = 0. 1pt

II/1-Ecrire le nombre complexe 8i sous la forme exponentielle

0,5pt

2- En déduire les solutions dans \mathbb{C} sous la forme algébrique dé l'équation : $z^3 = 8i$

III/Le plan complexe est muni du repère orthonormé directe $(0, \vec{u}, \vec{v})$. On considère les points A, B et C d'affixes respectives $z_A = \sqrt{3} + i$, $z_B = -\sqrt{3} + i$ et $z_C = -2i$.

1- Trouver le module et un argument de $Z = \frac{z_C - z_A}{z_B - z_A}$ 0,75pt

2- En déduire la nature exacte du triangle ABC. 0.5pt

3- Faire une figure 0,25pt

Exercice 3: 4,5 pts

On considère la suite (u_n) définie par u_0 = 1 et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + n - 2$

1. Calculer u_1, u_2 et u_3 0,75pt

2. a) Démontrer que pour tout entier $n \ge 4$, $u_n \ge 0$ 0,5pt

b) En déduire que pour tout entier $n \ge 5$, $u_n \ge n-3$ 0,75pt

c)En déduire la limite de la suite (u_n) 0,75pt

3. On définit la suite (v_n) par : $\forall n \in \mathbb{N}$, $v_n = -2u_n + 3n - \frac{21}{2}$

a)Démontrer que la suite (v_n) est suite géométrique de premier terme $-\frac{25}{2}$ et de raison $\frac{1}{3}$.

b) Exprimer v_n en fonction de . 0,25pt

c)En déduire que $\forall n \in \mathbb{N}, \ u_n = \frac{25}{4} (\frac{1}{3})^n + \frac{3}{2} n - \frac{21}{4}$. 0,5pt

d) Montrer que (u_n) diverge. 0,25pt

f) Exprimer la somme $S_n = v_1 + v_2 + \cdots + v_{n-1}$ en fonction de n. 0,5pt

g) Calculer S₁₂ 0,25pt

Exercice 4: 5,5pts

I/ Soit $z_1 = 1 + i$ et $z_2 = 1 + i\sqrt{3}$		
1. Déterminer le module et un argument de z_1 et z_2 .		
2. Ecrire sous formes algébrique et trigonométrique les nombres complexes z_1 . z_2 , $\frac{z_1}{z_2}$.	1,5pts	
3. En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.		
II/On considère la fonction f définie sur \mathbb{R} par $f(x) = cos x + cos^2 x$		
1.Etudier la parité de f .		
2.Montrer que f est 2π - périodique.		
3.a) Montrer que $f'(x) = -sinx(1 + 2cosx)$		
b)Montrer que f est strictement décroissante sur $[0,\frac{2\pi}{3}]$.	0,5pt	
c) Montrer que f est strictement croissante sur $\left[\frac{2\pi}{3};\pi\right]$.	0,5pt	
4. Montrer que l'équation $f(x) = 0$ admet une unique solution α telle que $\alpha \in [0, \frac{2\pi}{3}]$.		
5. Tracer la courbe de f sur $[0, \pi]$ puis sur \mathbb{R} .		

PARTIE B: évaluation des compétences (4,5pts)

Situation:

Un monsieur 'Y' signe un contrat de dépôt bloqué (aucune possibilité de retrait avant l'échéance) et sans frais avec sa banque pour que son capital de 1 million, déposé le 1^{er} janvier 2021, soit remis avec une majoration à lui-même ou à ses ayant droits le 31 décembre de l'année T où ce capital doublera (c'est la maturité du contrat). M. 'Y', très peu familier des mathématiques, vous présente le contrat où est écrit « le montant des avoirs déposés évoluent suivant la formule suivante donnant au nombre d'année(s) écoulé(s) t, le montant $(1,03)^t$ millions». Le jour du dépôt initial du capital, le M. 'Y' apprend que son épouse vient d'accoucher sa fille qui restera son unique enfant 35 ans plus tard, à la mort de 'Y'. X, un de vos camarades de classe à qui M. 'Y' a présenté le contrat, dit qu'il aurait été plus profitable pour le monsieur, de placer ce capital d'un million au taux d'intérêt annuel composé de 4% sur 22ans dans une autre banque 'B', tout en payant 50000FCFA de frais annuels de tenue de compte.

Taches

1-Dire quand la fille ou M. 'Y' pourra au plus tôt récupérer les deux millions. 1,5 pt 2-Expliquer si la fille de Monsieur 'Y' sera vivante à la date de maturité T. 1,5pt

3-Conseiller M.'Y' sur le choix le plus avantageux pour lui entre le contrat initial et celui de la banque B. 1,5pt