do H

Année scolaire 2019-2020

Classe: 2nd C

Durée: 2h

COEF: 3

(0.25pt)

EPREUVE DE PHYSIQUE

1^{ère} minisession

Evaluation des savoirs

1- Définir les termes et expressions suivants : mesure, erreur de mesure ; erreur systématique, chiffre significatif. (0.5ptx4)

2- Comment procède-t-on pour minimiser l'effet d'erreurs sur une mesure ? (0.5pt)

3- Quelle est la différence entre une grandeur dérivée et une grandeur fondamentale ? (0.5pt)

4- Citer quatre multiples de 10 en précisant le symbole. (1pt)

5- A partir du résultat suivant 0,104723 d'une expérience réalisée dans un laboratoire, donner :

5.1. Le nombre de chiffres significatifs de la mesure. (0.5pt)

5.2. Un Chiffre significatif incertain dans ce résultat. (0.25pt)

5.3. Le nombre de chiffre non significatif.

duction des services frie

Evaluation des savoirs- faire

1- Pour chacun des résultats ci-dessous obtenus dans lors d'une expérience, présentez-les sous écriture scientifique à quatre chiffres significatifs : 0.007654 ; 416,704; 37,022.10⁴ ; 0.009621.10⁻⁵. (1pt)

2- Effectuer les conversions suivantes : 600P kg=....n kg ; 0.075G s=.....f s (1pt)

3- Propagation des incertitudes

Pour tracer un parcours de course à pied autour d'un terrain de sports, un maître d'éducation physique ne dispose que d'un ruban déroulant de 20 m de long. Il mesure 5 unités plus 12.4 m pour la longueur du terrain et 2 unités plus 18.3 m pour la largeur.

Toutes les distances mesurées sont entachées d'une incertitude de respective de 5 cm et 4 cm. Quelle est le périmètre et l'aire du terrain et avec quelle précision sont-ils obtenu? (3pts)

Evaluation des compétences

Compétence visée : Dressage d'un tableau de mesure et détermination d'une grandeur à partir du graphique

Un élève de seconde C réalise une expérience au laboratoire dont but est la détermination d'une constante k d'un ressort. Au bout de ce ressort, il accroche des charges marquées \mathbf{m}_i de différentes valeurs $\mathbf{e}\mathbf{n}$ $\mathbf{k}\mathbf{i}\mathbf{l}\mathbf{o}\mathbf{g}\mathbf{r}\mathbf{a}\mathbf{m}\mathbf{m}\mathbf{e}$.

relève chaque fois la valeur de l'allongement x_i en **mètre** du ressort correspondant à la position d'équilibre O de la charge accrochée. On obtient un ensemble de valeurs m_1 = 0.010 ; m_2 = 0.020 ; m_3 = 0.030 ; m_4 = 0.050 ; m_5 = 0.060 ; correspondant respectivement à x_1 = 0.005 ; x_2 = 0.010 ; x_3 = 0.015 ; x_4 = 0.020 ; x_5 = 0.025 ; x_6 = 0.030.

En utilisant chaque couple de valeurs (m_i, x_i) ci-dessus pour calculer la constante k du ressort, l'élève ne retrouve curieusement pas la valeur indiquée par le fabricant du ressort.

- <u>Consigne 1</u>: Après avoir défini les deux grandeurs mis en jeux dans cette expérience et leurs instruments de mesures, dresser un tableau de mesures.
- Consigne 2: l'élève a relevé sur les grandeurs les incertitudes suivantes : $\Delta x = 0.001 \text{m}$ et $\Delta m = 0.001 \text{kg}$. Tracer sur papier millimétré la courbe des valeurs de x en fonction de celles de m soit le graphique x = f(m) à l'échelle : En abscisse 1cm pour 0,010kg et En ordonnée 1cm pour 0,005m.

La relation liant les grandeurs \mathbf{x} et \mathbf{m} est donnée par : $\mathbf{x} = \frac{g}{K}$. \mathbf{m} . Après identifier la pente \mathbf{P} de la courbe $\mathbf{x} = \mathbf{f}(\mathbf{m})$ à partir de la relation précédente, Déterminer à partir du graphique tracé, la valeur de cette pente ainsi que son incertitude en utilisant la formule de propagation d'incertitudes suivante :

$$\Delta\left(\frac{a}{b}\right) = \frac{a\Delta b + b\Delta a}{b^2}$$

Consigne 3 : g étant le champ de pesanteur du lieu d'expérience, de valeur 9,80 N/kg et d'incertitude $\Delta g=0,05N/kg$. Déduire la valeur de la constante k du ressort et ainsi que son incertitude Δk . Que peut-on conclure sur des variations de la grandeur x par rapport à celles de grandeur m.