MINESEC/DRL /DDM/Nkongsamba Ier	Année scolaire 2019-2020	
Evaluation du 1 ^{er} Trimestre	Premiere C	Session :Novembre 2019
Epreuve de Mathématiques	Coef :06	Durée : 03H
LYCEE DU NLONAKO	M. Jean Jacques Jemele	

PARTIE A Evaluation des Ressources [

[15.5*pts*]

Exercice 1 Equations et applications

3.5 Points

A) On se propose de déterminer les racines réelles du polynôme P tel que

$$P(x) = x^4 - 4x^3 - 58x^2 - 4x + 1.$$

1-a) Vérifier que 0 n'est pas une racine de P.

0.25pt

- **b)** Montrer que si un réel a est une racine de P alors son inverse est aussi une racine de P. **0.5pt**
- **2-a)** Pour x différent de 0, on pose $X = x + \frac{1}{x}$.

Exprimer X^2 en fonction de x et en déduire l'expression de $\frac{P(x)}{x^2}$ comme polynôme du second degré en X.

b) Déterminer toutes les racines réelles du polynôme P.

1pt

B) On considère la fonction g définie sur \mathbb{R} par $g(x) = \frac{2x-1}{x-1}$.

1) Démontrer que $g: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{2\}$ est bijective

0.5pt

2) Déterminer sa bijection réciproque g^{-1} .

0.5pt

EXERCICE 2

Dénombrement

6points

- **A)** On considère l'équation (E): $ax^2 + 4x + c = 0$. Un jeu consiste à lancer un dé tétraédrique deux fois de suite dont les faces sont numérotées 1, 2, 3 et 4 et à noter à chaque lancé le numéro de la face inférieure obtenu. Au premier lancé, le numéro d'apparition est noté a ; au deuxième lancé, ce numéro est noté c.
- a) Combien d'équation du second degré sous la forme de (E) peut-on écrire ? **0.5pt**
- b) Combien d'équation (E) admettant une racine double peut-on écrire ? **0.5pt**
- c) Combien d'équation (E) admettant deux racines distinctes peut-on écrire ? 0.5pt
- d) Combien d'équation (E) n'admettant pas de racine peut-on écrire ? **0.5pt**

B)

1° Résoudre dans N,l' équation suivante :

0.5pt

$$C_{2n+2}^{13-n} = C_{2n+2}^{2n-2}$$

2° Démontrer la formule du triangle de Pascal suivante :

1pt

$$C_{n-1}^{p-1} + C_{n-1}^{p} = C_{n}^{p}$$

3° Sans développer l'expression $(x-1)^7$, donne la valeur du coefficient de son monôme de degré 4. **0.5pt**

EXERCICE 3 Barycentres et lignes de niveau

6points

L'unité est le cm. On considère le triangle ABC rectangle en A tel que AB = 3 et BC = 5.

Soient *I* le milieu de [BC], H et K les points tels que : $4\overrightarrow{AH} = \overrightarrow{AC}$ et $\overrightarrow{AK} = \frac{1}{3}\overrightarrow{AB}$

Soient m un nombre réel non nul et G un point tel que : $m\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{O}$.

I-

1) Ecrire H comme barycentre de A et C.

0.5pt

2) Ecrire K comme barycentre de A et B.

0.5pt

- 3) Déterminer les valeurs m pour lesquelles G est le barycentre des points pondérés (A, m); (B, 1) et (C, 1) et montrer que dans ce cas, les points I, A et G sont alignés. **1pt**
 - **II** On suppose que m = 5.
- 1) Montrer que les droites (AI) et (HK) sont concourantes.

0.5pt

2) Construire le triangle ABC et placer les points H, K et G.

1pt

3) Calculer la distance HG.

0.5pt

- 4) Soit (Γ_1) l'ensemble des points M du plan tels que : $MB^2 + MC^2 = 25$.
 - a) Répondre par vrai ou faux

1pt

- i) $I \notin (\Gamma_1)$ ii) $A \in (\Gamma_1)$ iii) $B \in (\Gamma_1)$ iv) $C \notin (\Gamma_1)$
- b) Donner la nature de (Γ_1) et le construire.

1pt

- 5) Déterminer et construire (Γ_2) l'ensemble des point M tels que $MB^2 MC^2 = 25$.
- 6) Montrer que le vecteur $2\overrightarrow{AM} \overrightarrow{BM} \overrightarrow{CM}$ est indépendant du point M.

0.5pt

PARTIE B Evaluation des Compétences [4.5pts]

<u>Compétence attendue</u> : Résoudre une situation problème, déployer un raisonnement logique, communiquer à l'aide du langage mathématique en faisant appel au barycentre et aux outils de dénombrement.

Afin d'alimenter deux villages A et B distants de 100m en eau potable, les élites du village font appel à deux ingénieurs.

- L'ingénieur 1 demande de construire des forages en des points M tels que

 $MA^2 + MB^2 = 10000$

- L'ingénieur 2 demande de les construire en des points P tels que $\overrightarrow{PA}.\overrightarrow{PB}$ =-900

Pour fêter cette installation d'eau, le chef du village A réuni ses quatre garçons et ses deux filles et doit les faire asseoir sur un banc

Tache 1 : Déterminer l'ensemble des positions occupées par les forages en tenant compte de la proposition de l'ingénieur 1 [1,5pt]

Tache 2 : Où va-t-on construire les puits de forages si on tient compte de la conception de l'ingénieur 2 ? [1,5pt]

Tache 3 : Quel est le nombre de dispositions possibles des six enfants si chaque fille est intercalée entre deux garçons [1,5pt]