REPUBLIQUE DU CAMEROUN

Année scolaire : 2020-2021

Classe: 2nde MISE

Durée : 3h Coefficient : 5 Prof : T. N. AWONO MESSI

EPREUVE DE MATHEMATIQUES N°2 DU 1er TRIMESTRE

PARTIE A: EVALUATION DES RESSOURCES (15 points)

EXERCICE 1: (4,5 points)

- **1.** Soit ABC un triangle de centre de gravité G.
 - (a) Montre que pour tout point M du plan, on a : $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$. 0,75pt
 - **(b)** Détermine l'ensemble des points M du plan tels que : $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 6$. **0,75pt**
- **2.** EPS est un triangle. I est le milieu de [EP]; J le point tel que : $\overrightarrow{EJ} = -\overrightarrow{ES}$.
 - (a) Réalise une figure. 0,5pt
 - **(b)** Démontre que $\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{EP} \overrightarrow{ES}$.
 - (c) On note K le point tel \overrightarrow{q} ue : $2\overrightarrow{KP} + \overrightarrow{KS} = \overrightarrow{0}$. Exprime \overrightarrow{PK} en fonction de \overrightarrow{PS} , puis construis le point K.
 - (d) Déduis-en que $\overrightarrow{IK} = \frac{1}{6}\overrightarrow{EP} + \frac{1}{3}\overrightarrow{ES}$ et que $\overrightarrow{IJ} = -3\overrightarrow{IK}$.
 - (e) Que dire alors des points I, J et K?

EXERCICE 2: (4 points)

Soient u et v deux vecteurs non colinéaires du plan.

- **1.** Développe $(\vec{u} + \vec{v})^2$ et $(\vec{u} \vec{v})^2$, puis calcule $(\vec{u} + \vec{v})^2 + (\vec{u} \vec{v})^2$ et $(\vec{u} + \vec{v})^2 (\vec{u} \vec{v})^2$. **1pt**
- **2.** Soient O, A, B et C les points du plan tels que : $\overrightarrow{OA} = \overrightarrow{u}, \overrightarrow{OB} = \overrightarrow{v}$ et $\overrightarrow{OC} = \overrightarrow{u} + \overrightarrow{v}$.
 - (a) Fais une figure et démontre que le quadrilatère *OACB* est un parallélogramme.
 - (b) Exprime à l'aide des points de la figure, le vecteur u-v. 0,5pt
 - (c) Déduis-en que $2OA^2 + 2OB^2 = OC^2 + AB^2$, et énonce une propriété des diagonales d'un parallélogramme.
- **3.** Ecris $(\vec{u} + \vec{v})^2 (\vec{u} \vec{v})^2$ en fonction des longueurs des diagonales du parallélogramme *OACB*. **0,5pt**

EXERCICE 3: (3 points)

- 1. Calcule le nombre $\frac{7}{6} \div \left(1 \frac{2}{12}\right)$ et donne le résultat sous la forme d'une fraction irréductible.
- irréductible.

 2. On pose : $\alpha = \sqrt{1 + \frac{\sqrt{7}}{4}} \sqrt{1 \frac{\sqrt{7}}{4}}$.
- (a) Donne en justifiant le signe de α . 0,5pt
 - (b) Calcule α^2 et déduis-en la valeur exacte de α .

Prof: AWONO MESSI@2020

1pt

EXERCICE 4: (3,5 points)

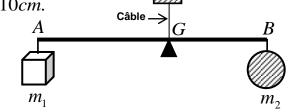
1. Montre chacune des égalités suivantes :

(a) Pour
$$x \neq -2, x+1-\frac{1}{x+2} = \frac{x^2+3x+1}{x+2}$$
. 0,5pt

(b) Pour tout réel
$$x > 2$$
, $\sqrt{x+2} - \sqrt{x-2} = \frac{4}{\sqrt{x+2} + \sqrt{x-2}}$. **0,5pt**

2. Résous chacune des équations et inéquations suivantes :

(a)
$$|x+4| \le 2$$
 ; (b) $|x+6| > 2$; (c) $|8-x| = 3$


3. x est un réel tel que 3 < x < 4. On pose A = 4 - x. Compare les nombres A, A^2 et A^3 .

1pt

PARTIE B: EVALUATION DES COMPETENCES (5 points)

SITUATION:

Sur la **figure** ci-contre, la barre $\begin{bmatrix} AB \end{bmatrix}$ est rigide et mesure 10cm. En A et B sont accrochés deux objets de masses m_1 et m_2 . Un câble fixé par **BELL** au point G suspend le système.

En physique, la loi d'Archimède permet d'affirmer que la barre est en équilibre lorsque $m_1GA=m_2GB$.

BELL, élève en classe de 2^{nde} **MISE** souhaite déterminer les positions du point G et calculer la masse d'un objet pour que le système soit en équilibre.

Aide BELL à résoudre les tâches ci-dessous :

Tâches:

- **1.** Détermine (schéma à l'appui) la position du point G lorsque $m_1 = 3g$ et $m_2 = 12g$.
- **2.** Détermine (schéma à l'appui) la position du point G lorsque $m_1 = m_2$.
- 3. Calcule la masse de l'objet qu'on doit accrocher au point B lorsque $\overrightarrow{AG} = \frac{3}{4}\overrightarrow{AB}$ et $m_2 = 4g$.

Présentation : 0,5pt

Prof: AWONO MESSI@2020

1,5pt