LYCEE BILINGUE DE BALENG		EVALUATION	Durée : 3H	Coef: 2
Classe : Tle C&D	Décembre 2020	XIO C	Examinateur : DJIPSEU	

PARTIE A: ÉVALUATION DES RESSOURCES / 12 POINTS

A- VÉRIFICATION DES SAVOIRS / 4 POINTS

- 1- Définir : Anhydride d'acide ; Chauffage à reflux. 1 pt
- 2- Décrire le test d'identification des alcools au laboratoire. Equation et nomenclature du produit obtenu exigées en utilisant l'éthanol 1 pt
- 3- Q.C.M 1 pt
 - 3-1. La réaction entre un anhydride d'acide et une anime conduit à :
- a) Amide et acide carboxylique b) Amide et ester c) Amide et chlorure d'hydrogène 3-2. le groupe caractéristique des alcools est :
- a) Tétraédrique
- b) Plan c) Linéaire
- d) Plan et cyclique
- 4- Ecrire l'équation de polycondensation entre l'hexanedioïque et l'hexane 1,6- amine. 1pt

B- APPLICATIONS DES SAVOIRS / 4 POINTS

- 1- On fait réagir l'acide isopropylméthanoïque avec le chlorure de thionyle. On obtient un corps A, qui réagir à son tour ave l'éthanol pour donner un corps B.
- 1-1. Ecrire les équations de formation des composés A et B puis nommer les. 1,5 pt
- 1-2. Donner les caractéristiques de l'équation conduisant au composé B. 0,5 pt
- 2- La réaction entre un corps C, ramifié, comportant quatre atomes de carbone et testé positif aux tests de la 2,4-DNPH et du réactif de Schiff sur du permanganate de potassium en milieu acide donne un composé D.
- 2-1. Ecrire les demi-équations d'oxydoréductions mise en jeu et en déduire l'équation-bilan. 0,75 pt
- 2-2. Donner la fonction chimique du composé D et décrire un test permettant de le mettre en évidence. 0,75pt
- 2-3. Nommer les composés C et D. 0,5 pt

C- UTILISATION DES SAVOIRS / 4 POINTS

L'action de l'hydroxyde de sodium sur un corps gras forme un savon,

Dans un balon de 250 mL, on introduit avec précaution 20 cm³ d'une solution aqueuse de soude de concentration 8 mol.L⁻¹, 11 cm³ d'huile alimentaire, 10 cm³ d'éthanol et quelques grains de pierre ponce. On chauffe le mélange durant trente minutes.

Ensuite, on verse le melange réactionnel dans une solution de chlorure de sodium pour effectuer le relargage du savon. Une filtration est réalisée, puis le savon obtenu est seché.

Composition 1 Chimie Tle G&D

Lycée Bilingue de Baleng

L'huile alimentaire est un corps gras. On considère qu'elle n'est constituée que d'oléine qui est le triester du propane-1,2,3-triol (glycérol) et de l'acide oleique; sa masse volumique $\rho = 0.90$ g.mol⁻¹ et sa masse molaire est 884 g.mol⁻¹; masse molaire atomique de $Na = 23 \text{ g.mol}^{-1}$; $C = 12 \text{ g.mol}^{-1}$; $O = 16 \text{g.mol}^{-1}$ et $H = 1 \text{g.mol}^{-1}$.

1- a) Ecrire la formule semi- développée de l'oléine sachant que la formule semi- développée de l'acide oléique est : $CH_3 - (CH_2)_7 - CH = CH - (CH_2)_7 - COOH$ 0,5 pt

b) Donner le nom systématique de l'acide oléique. 0,5 pt

2- Ecrire l'équation - bilan de la saponification de l'oléine. 0,5 pt

3- Déterminer :

- 3-1- La quantité (en mol) n₁ d'ion hydroxyde (HO) introduite dans le ballon. 0,75 pt
- 3-2- La quantité (en mol) n₂ d'oléine introduite dans le ballon. 0,75 pt
- 3-3- La masse maximale de savon sec que l'on peut espérer obtenir. 1 pt

PARTIE B: ÉVALUATION DES COMPÉTENCES / 8 POINTS

Situation : Déterminer le degré alcoolique d'un vin de table

La « CUVEE IMPERIALE » porte l'indication suivante 12,5% Vol.

Afin de vérifier cette indication, on réalise le dosage de l'éthanol contenu dans cet échantillon de vin pour en déterminer le degré alcoolique. Le degré alcoolique d'un vin est le pourcentage volumique d'alcool pur (en mL), mesuré à une température de 20 °C, contenue dans 100 mL de vin.

- Etape 1: On distille 100 mL de vin pendant un temps suffisamment long pour recueillir tout l'éthanol. On introduit el distillat dans une fiole jaugée de 1000 mL que l'on complète jusqu'au trait de jauge par de l'eau distillée. La solution obtenue est notée S.
- Etape 2 : Dans le but d'oxyder totalement l'alcool, un volume $V_0 = 10 \text{ mL}$ de solution a été ajouté à V₁ = 20 mL de solution de dichromate de potassium en excès de concentration c = 0,10 mol/L. on ajoute 10 mL d'acide sulfurique concentré. Après décoloration de la solution de dichromate de potassium,
- Etape 3: On dose alors les ions dichromates en excès avec une solution de sel de Mohr de concentration contenant des ions Fe^{2+} tels que $[Fe^{2+}] = 5,00.10^{-1}$ mol/L. le volume de solution de sel de Mohr nécessaire pour atteindre l'équivalence est Véq = 7,3 mL.

Tâche: Vérifier l'indication portée sur la bouteille de vin.

Données: La masse volumique de l'éthanol est 780 kg.m⁻³