MINISTERE DES ENSEIGNEMENTS SECONDAIRES					
DELEGATION REGIONALE DU CENTRE					
Classe	Epreuve de			Coef	Durée
	Mathématiques	COLLEGE LE CHAMP\$	IBAY		
2 ^{nde} C	Année 2020/2021	Contrôle 2		5	зН

PARTIE A: EVALUATION DES RESSOURCES 15.5pts

Exercice 1: 5pts

1/ Soient C= $\sqrt{5} + 3$ et D= $\sqrt{5} - 3$.

a) Calculer C^2 , D^2 et $C \times D$.

0,75pt

b) Démontrer que $\frac{C}{D} + \frac{D}{C}$ est un entier relatif.

0,75pt

2/ Résoudre dans \mathbb{R}

a) |3x+2| = 5b) $|x-1| \le 3$

c) |-5x+7| = -8

1.5pts

3/ On donne $A = \frac{\frac{-7}{3} + \frac{2}{5} \times (-3)}{\frac{1}{2} - 7} \div \left(\frac{1}{2}\right)^3$ $B = \frac{36 \times 10^{-7} \times 0,0064 \times 1600}{6^5 \times 10^{-6} \times 2^{11}}$

$$B = \frac{36 \times 10^{-7} \times 0,0064 \times 1600}{6^5 \times 10^{-6} \times 2^{11}}$$

a) Calculer A et donner le résultat sous forme irréductible.

1pt

b) Simplifier au maximum B.

1pt

Exercice 2: 3,25pts

ABC est un triangle quelconque. A,'B',C' sont les milieux respectifs des côtés [BC]; [AC] et [AB]. 1 / Construire le point G centre de gravité de ABC.

2/ En utilisant la propriété de la droite du milieu, montrer que

0,5pt

$$\overrightarrow{BG} = \frac{2}{3}\overrightarrow{BB'}$$
 ; $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AA'}$; $\overrightarrow{CG} = \frac{2}{3}\overrightarrow{CC'}$

1,5pt

3/ En déduire que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{o}$

1,25pt

Exercice 3: 4pts

Soit $B=(\vec{\imath},\vec{\jmath})$ une base des vecteurs de plan. On donne $\vec{u}=a\vec{\imath}+2\vec{\jmath}$ et $\vec{V}=2\vec{\imath}+a\vec{\jmath}$

1) a) Calculer $det(\vec{u}, \vec{v})$ en fonction de a.

0,25pt

b) Déterminer a pour que \overrightarrow{u} et \overrightarrow{v} soient colinéaires ?

0, 5pt

2) On donne $\vec{S} = 4\vec{\iota} - \vec{\jmath}$ et $\vec{T} = \vec{\iota} + 3\vec{\jmath}$.

a) Justifie que $(\vec{S}; \vec{T})$ est une base du plan.

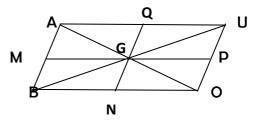
1pt

b) Écrire \vec{i} et \vec{j} en fonction de \vec{S} et \vec{T} .

1pt

c) Déduire les coordonnées de \vec{i} et \vec{j} dans la base $(\vec{S}; \vec{T})$.

0,5pt

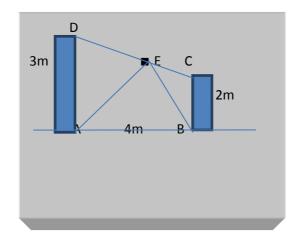

3) Soit $A\binom{2}{-1}$ et $C\binom{3}{1}$ deux points dans le repère $(0, \vec{l}, \vec{j})$, déterminer les cordonnées de C dans le repère (A, \vec{i}, \vec{i}) . 0,75pt

Exercice 4: 3, 25 pts

ABOU est un parallélogramme de centre G.

M,N,P et Q sont les milieux respectifs des segments

[AB], [BO], [OU] et [AU].



1. Démontrer que $\overrightarrow{AO} + \overrightarrow{BU} = \overrightarrow{AU} + \overrightarrow{BO}$

- (1 pt)
- 2. Déterminer les coordonnées des points A, G, M, O et N dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AU})$. $(1,25 \ pts)$
- 3. a)Montrer que dans cette base, $\overrightarrow{MN}\left(\frac{1}{2};\frac{1}{2}\right)$ et $\overrightarrow{AO}(1;1)$. (0,5pt)
 - b) En déduire que (MN) // (OA) (0,5 pt)

PARTIE B: EVALUATION DES COMPETENCES 4,5pts

Un ingénieur veut concevoir un dispositif afin de quitter du point C d'un bloc de béton de hauteur 2 m à un point D d'un autre bloc de béton de hauteur 3m. Les deux bloc étant distants de 4m. Pour cela il envisage fixer une planche [CD], la renforcer avec des supports [AE] et [EB] tel que $\overrightarrow{DE} = \frac{2}{3}\overrightarrow{DC}$, comme l'indique la figure ci-dessous. Le bois à utiliser étant de mauvaise qualité il désire le traiter avec un produit chimique qui nécessite 0.75 litre par mètre de planche. Il observe sa structure à partir d'un repère orthonormé (A, \vec{i} , \vec{j}) tel que $\vec{i} = \frac{1}{4}\overrightarrow{AB}$ et $\vec{j} = \frac{1}{3}\overrightarrow{AD}$.

- 1) Quelle quantité de produit chimique est'il nécessaire pour traiter la planche [DC]? 1.5pts
- 2) Quelle quantité de produit chimique est'il nécessaire pour traiter la planche [AE]? 1.5pts
- 3) Quelle quantité de produit chimique est'il nécessaire pour traiter la planche [EB]? 1.5pts