Suite définie par une intégrale

Terminale C

PAR GILDAS MBA OBIANG

Exercice 1

Soit $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 x^n e^{x^2} dx$.

1. Montrer que $\forall n \in \mathbb{N}$, on a :

$$\frac{1}{n+1} \leqslant I_n \leqslant \frac{e}{n+1}$$

- 2. Préciser alors la limite de la suite (I_n) .
- 3. a) Trouver une relation entre I_{n+2} et I_n .
 - b) Calculer I_1 puis I_5

Résolution

1. La fonction $f: x \longmapsto e^{x^2}$ est dérivable sur $\mathbb R$ et particulier sur [0;1] et pour tout $x \in [0;1], \ f'(x) = 2x \, e^{x^2} \geqslant 0$. Par suite, f est strictement croissante sur [0;1]. On en déduit l'inégalité suivante :

$$\forall x \in [0; 1], \quad f(0) \leqslant f(x) \leqslant f(1)$$
$$\forall x \in [0; 1], \qquad 1 \leqslant e^{x^2} \leqslant e$$

Or, $\forall x \in [0;1]$, $x^n \ge 0$ donc $x^n \le x^n e^{x^2} \le ex^n$. En vertu de la positivité de l'intégrale on a :

$$\int_{0}^{1} x^{n} dx \leqslant I_{n} \leqslant \int_{0}^{1} ex^{n} dx$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1} \leqslant I_{n} \leqslant e\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{1}{n+1} \leqslant I_{n} \leqslant \frac{e}{n+1}$$

2. On a : $\lim_{n \to +\infty} \frac{1}{n+1} = \lim_{n \to +\infty} \frac{e}{n+1} = 0$. Par suite, en vertu du théorème sur la comparaison de suite, on a $\lim_{n \to +\infty} I_n = 0$.

1

3. a) Soit n un entier naturel.

On a : $I_n = \int_0^1 x^n e^{x^2} dx$. Posons $u(x) = e^{x^2} \Longrightarrow u'(x) = 2x e^{x^2}$ et $v'(x) = x^n \Longrightarrow v(x) = \frac{x^{n+1}}{n+1}$, il en résulte que :

$$I_n = \left[\frac{x^{n+1}e^{x^2}}{n+1} \right]_0^1 - \frac{2}{n+1} \int_0^1 x^{n+2}e^{x^2} dx$$

$$I_n = \frac{e}{n+1} - \frac{2}{n+1} I_{n+2}$$

Donc:
$$I_{n+2} = \frac{n+1}{2} \left(\frac{e}{n+1} - I_n \right)$$
 c'est-à-dire: $I_{n+2} = \frac{e}{2} - \frac{n+1}{2} I_n$.

b)
$$I_1 = \int_0^1 x e^{x^2} dx = \left[\frac{e^{x^2}}{2} \right]_0^1 = \frac{e - 1}{2}.$$

On a
$$I_3 = \frac{e}{2} - I_1 = \frac{e}{2} - \frac{e-1}{2} = \frac{1}{2}$$
, donc $I_5 = \frac{e}{2} - 2I_3 = \frac{e}{2} - 1 = \frac{e-2}{2}$.

Exercice 2

Soit n un entier naturel, on pose $I_n = \int_0^1 \left(\sqrt{1-t^2}\right)^n dt$.

- 1. Calculer I_0 , I_1 .
- 2. Montrer que la suite (I_n) est décroissante et minorée. Conclure.
- 3. a) Montrer que pour tout entier naturel supérieur ou égale à 2 :

$$I_n = \frac{n}{n-1} I_{n-2}$$

- b) En déduire que pour tout n, $(n+2)I_{n+1}I_{n+2} = (n+2)I_{n+1}I_n$.
- c) En déduire que $(n+2)I_{n+1}I_{n+2}$ est indépendant de n, quel que soit n puis déterminer sa valeur.

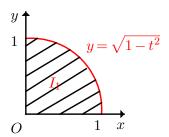
Résolution

1.
$$I_0 = \int_0^1 dt = [x]_0^1 = 1$$
.

Nous allons calculer I_1 à par deux méthodes.

Méthode 1

 $I_1 = \int_0^1 \sqrt{1-t^2} dt$. La fonction $f: t \longmapsto \sqrt{1-t^2}$ étant positive sur [0;1], alors I_1 est l'aire du plan délimité par le graphe de la fonction f, l'axe des abscisses et les droites d'équation t=0 et t=1.

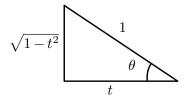


Par conséquent I_1 est l'aire du quart du disque de centre O(0;0) et de raison 1.

Il s'ensuit que : $I_1 = \frac{\pi \times 1^2}{4} = \frac{\pi}{4}$

Méthode 2

Considérons le triangle rectangle de coté 1, t et $\sqrt{1-t^2}$ suivant :



On a : $\sqrt{1-t^2} = \sin \theta$ et $\cos \theta = t$. On a $dt = -\sin \theta d\theta$.

 $t=0\Longleftrightarrow\theta=\frac{\pi}{2}$ et $t=1\Longleftrightarrow\theta=0.$ Il s'ensuit par la propriété du changement de variable que :

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2\theta}{2} d\theta = \left[\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}$$

2. Soit *n* un entier naturel. On a : $I_{n+1} - I_n = \int_0^{\frac{\pi}{2}} (\sqrt{1-t^2} - 1) (\sqrt{1-t^2})^n dt$.

Or, $\forall t \in [0;1], \sqrt{1-t^2} \leq 1$ et $\left(\sqrt{1-t^2}\right)^n \geq 0$. Donc $\left(\sqrt{1-t^2}-1\right)\left(\sqrt{1-t^2}\right)^n \leq 0$, par suite en vertu de la positivité de l'intégrale, $I_{n+1} - I_n \leq 0$. D'où, la suite (I_n) est strictement décroissante.

Comme, $\forall t \in [0; 1], (\sqrt{1-t^2})^n \ge 0$, alors $I_n \ge 0$. Il s'ensuit que (I_n) est suite décroissante et minorée par 0, par conséquent (I_n) converge.

3. En posant $\cos x = t$, $\sqrt{1-t^2} = \sin x$. On a $dt = -\sin x \, dx$.

Donc $t=0 \Longleftrightarrow x=\frac{\pi}{2}$ et $t=1 \Longleftrightarrow x=0$. Il s'ensuit par la propriété du changement de variable que :

$$I_n = \int_0^1 \left(\sqrt{1-t^2}\right)^n dt = \int_0^{\frac{\pi}{2}} \sin^{n+1}x \, dx$$

Pour tout $n \ge 2$, on en :

$$I_n = \int_0^{\frac{\pi}{2}} \sin^{n+1}x \, dx = \int_0^{\frac{\pi}{2}} (1 - \cos^2 x) \sin^{n-1}x \, dx = I_{n-2} - \int_0^{\frac{\pi}{2}} \cos^2 x \sin^{n-1}x \, dx.$$

Posons $u(x) = \cos x \Longrightarrow u'(x) = -\sin x$;

et $v'(x) = \cos x \sin^{n-1} x \Longrightarrow v(x) = \frac{1}{n} \sin^n x$. Or, à l'aide d'une intégration par partie on a :

$$\int_0^{\frac{\pi}{2}} \cos^2 x \sin^{n+1} x \, dx = \left[-\frac{\cos x}{n} \sin^n x \right]_0^{\frac{\pi}{2}} - \frac{1}{n} \int_0^{\frac{\pi}{2}} \sin^n x \, dx = -\frac{1}{n} I_n$$

3

Donc $I_n=I_{n-2}+\frac{1}{n}I_n$ c'est-à-dire $I_n=\frac{n}{n+1}I_{n-2}$. En déduit que pour tout entier naturel : $I_{n+2}=\frac{n+2}{n+3}I_n$.

b) Soit n un entier naturel. On a :

$$(n+3)I_{n+1}I_{n+2} = (n+3)I_{n+1} \times \frac{n+2}{n+3}I_n = (n+2)I_{n+1}I_n$$

c) On en déduit que la suite $[(n+2)I_{n+1}I_n]$ est constante. Par suite pour tout entier naturel $n, (n+2)I_{n+1}I_n = (0+2)I_{0+1}I_0 = 2I_0I_1 = \frac{\pi}{2}$. C'est-à-dire :

$$\forall n \in \mathbb{N}, \ I_{n+1}I_n = \frac{\pi}{2(n+2)}$$

 \mathbf{Fin}