ANNÉE SCOLAIRE 2019-2020

CLASSE: 1ère C α D DURÉE: 2h; COEFF: 2

ÉPREUVE DE CHIMIE

VulAPHA

Mini-Session Mi-Trimestre 1

A/ Evaluation des ressources (10 points)

EXERCICE 1: Savoirs (5 points)

1. Définir les termes suivants : réducteur, réaction d'oxydoréduction.

0.5x2 = 1pt

2. Choisir la bonne réponse :

0,25x4=1pt

- a) une oxydation correspond à une perte/ un gain d'électrons.
- b) l'action d'un acide sur un métal est une réaction endothermique/exothermique.
- c) Toute solution aqueuse ionique est toujours neutre/électriquement neutre.
- d) Une solution aqueuse de chlorure de fer III est de couleur rouille/jaune-orangée.

3. Nommer les ions suivants : Cr₂0₇²⁻; ClO⁻

0,25x2=0,5pt

3. Donner la formule chimique et le nom de chaque précipité blanc décrit ci-dessous :

0,25x6=1,5pt

- Soluble dans un excès de soude mais insoluble dans l'ammoniac.
- Noircit peu à peu à la lumière.
- Soluble à la fois dans un excès de soude et dans l'ammoniac.
- 4. Observer l'équation-bilan de la réaction redox suivante : $3Sn + 2Au^{3+} \rightarrow 3Sn^{2+} + 2Au$
- 4.1. Quelle est l'espèce oxydée et l'espèce réduite?

0,25x2=0,5pt

4.2. Quel est le métal qui se forme au cours de cette réaction et comment le reconnait-on ? 0,25x2=0,5pt

EXERCICE 2: Savoirs- faire et être (5 points)

On plonge un morceau de zinc impur de masse 5,0 g dans 200 mL d'une solution molaire d'acide chlorhydrique. A la fin du dégagement gazeux, il reste 0,05 mol d'ions hydronium dans la solution.

1. Quel est le gaz qui se dégage ? Comment le met-on en évidence dans un milieu réactionnel ? 0,75pt

2. Ecrire les demi-équations électroniques traduisant l'oxydation et la réduction puis l'équation-bilan de la réaction rédox qui s'est produite.

0,5x3=1,5pt

3. déterminer la quantité de matière initiale des ions hydronium dans la solution.

0,75pt

4. En déduire la quantité de matière d'ions hydronium ayant réagi.

0,75pt

5. Quel est le pourcentage massique de zinc pur contenu dans ce morceau de zinc.

1,25pt

B/ Evaluation des compétences (10 points)

EXERCICE 3: Compétence visée: monter que la réaction entre un acide et un métal n'est pas systématique. (4 points)

Un disque métallique de masse 250 Kg est constitué d'un alliage de cuivre et d'aluminium. Dans un échantillon de 10 g de cet alliage, un verse 500 ml d'une solution d'acies suffurique (2H₂O² - SO²) de

1. Ecrire l'équation-bilan de la réaction qui se produit.

1pt

2. Indiquer l'oxydant et le réducteur dans cette réaction chimique.

0,25x2=0,5pt

3. Donner la composition centésimale massique de cet échantillon d'alliage.

1,5pt

4. Calculer la masse de chaque métal dans les 250 Kg.

1pt

EXERCICE 4: Type expérimental (6 points)

On veut préparer une solution bleue de sulfate de cuivre II en dissolvant 58 g de cristaux de sulfate de cuivre pentahydraté de formule brute CuSO₄, 5H₂O dans 500 mL d'eau distillée.

1. Quelle est la couleur des cristaux utilisés ? A quoi est-elle due ?

0,25x2=0,5pt

2. Déterminer la concentration molaire de cette solution aqueuse.

0,75pt

3. Décrire brièvement le mode opératoire de cette préparation en précisant la verrerie utilisée.

0,75pt

4. Combien y a-t-il d'ions sulfate et d'ions cuivre II dans cette solution aqueuse ?

0,75pt

5. On prélève 50 ml de la solution préparée que l'on introduit dans un bécher puis on y ajoute de la limaille de fer.

5.1. Ecrire l'équation-bilan de la réaction qui a lieu.

0,75pt

5.2. Quelle masse minimale de limaille de fer doit-on introduire dans ce volume de solution pour faire disparaître toute sa couleur bleue ? 0,75pt

5.3. Quelle est la masse de métal formée ?

0,75pt

5.4. Déterminer la quantité d'électricité correspondant au nombre de moles d'électrons échangé au cours de cette réaction redox.

1pt

Données:

Masses molaires atomiques en g.mol-1 : Al : 27 ; Cu : 63,5 ; Zn : 65,4 ; Fe : 55,8

Constante d'Avogadro : $N = 6.02.10^{23}$

La charge d'un électron : $e = 1,6.10^{-19} C$