ANNEE SCOLAIRE 2019/2020

CLASSE: 1ère C

Evaluation harmonisée du 2éme TRIMESTRE

DUREE: 3 H. COEF: 6

EPREUVE DE MATHEMATIQUES

PARTIEA: EVALUATION DES RESOURCES

EXERCICE 1: 5 points

- Le plan est muni d'un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$. Soit f la transformation du plan qui à tout point I) M(x;y) associe le point M'(x';y') tel que : $\begin{cases} x' = -2x + 3 \\ y' = -2y + 3 \end{cases}$
- 1. Déterminer les coordonnées de l'unique point Ω , invariant par f. 0,5pt
- 2. Etablir une relation vectorielle entre les vecteurs $\overrightarrow{\Omega M'}$ et $\overrightarrow{\Omega M}$. 0,5pt
- 3. En-déduire la nature et les éléments caractéristiques de f. 0,5pt
- 4. Déterminer l'expression analytique de la réciproque f⁻¹ de f. 0,5pt
- 5. Soit (C) le cercle de centre A(1, 0) et de rayon 3.
 - a) Donner une équation cartésienne de (C). 0,5pt
 - b) Déterminer une équation de (C'), image de (C) par f. 0,5pt
 - c) Donner la nature et les éléments caractéristiques de (C'). 0,5pt
- ABCD est un losange de sens direct tel que $mes \hat{A} = \frac{\pi}{3}$ II)
- 1. Déterminer la nature et les éléments caractéristiques des transformations suivantes : f=S_(BC)oS_(AD) et $g=S_{(CD)}oS_{(AB)}$.
- 2. Démontrer que fog = gof= $t_{\overrightarrow{AC}}$ 0,5pt

EXERCICE2.(3pts)

- 1. On considère le polynôme P de \mathbb{R} défini par : $P(x) = 8x^3 4x + 1$
- a) Montrer que P(x) est divisible par 2x 1. 0,25pt
- b) Résoudre dans \mathbb{R} l'équation P(x) = 0. 0,5pt
- 2. On rappelle que $sin \frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$. Donner la valeur exacte de $cos \frac{4\pi}{5}$. 0,5pt 3. Soit n un entier naturel, et θ un nombre réel de]0; $\frac{\pi}{2}$ [. On définit une suite numérique (U_n) de la manière suivante : $U_0 = 2 \cos \theta$ et $U_{n+1} = (\cos \theta) U_n - 1$.
 - a) Montrer que $U_1 = \cos 2 \theta$. 0,5pt
 - b) On choisit $U_2 = \frac{-5}{4}$. Montrer que $\cos \theta$ est solution de l'équation P(x) = 0. 0.5pt
 - c) Déduire les valeurs de θ pour lesquelles $U_2 = \frac{-5}{4}$. 0,75pt

EXERCICE3.(5pts)

Soit f la fonction numérique définie par $(x) = \frac{x^2}{|x|-2}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$

- 1. Préciser D_f, puis calculer les limites de f aux bornes de ce domaine. 1pt
- 2. Étudier la continuité et la dérivabilité de f en 0. 1pt
 - a) Déterminer trois réels a, b et c tels que pour tout $x \ge 0$, $f(x) = ax + b + \frac{c}{x-2}$ 0,5pt
 - b) De même, trouver trois réels a', b' et c' tels que pour tout $x \le 0$, $f(x) = a'x + b' + \frac{c'}{x+2}$ 0.5pt
- c) Déduire que (C) admet 4 asymptotes dont on donnera les équations, puis étudier la position relative de (C) par rapport à ses asymptotes obliques. 1pt
- 3. Montrer que f est une fonction paire et étudier ses variations sur [0; +∞[. 1pt

4. Dresser alors le tableau de variation de f sur son domaine de définition.

5. Tracer soigneusement la courbe (C).

0,5pt 1pt

Exercice 4 (2,5pts)

ABCDEFGH est un cube de base ABCD et EFGH

1)	Justifier que la droite (AD) est orthogonale au plan (ABF).	1pt
2)	En déduire que les droites (AD) et (BE) sont orthogonales	0,5pt
3)	En déduire que les plans (AEF) et (BDC) sont perpendiculaires.	0,5pt
4)	Démontrer que les droites (EF) et (BG) sont orthogonale.	0 ,5pt

PARTIE B: EVALUATION DES COMPETENCES (4,5 pts)

Le conseil d'établissement d'un Lycée de la place voudrait viabiliser un espace libre de son site en y construisant un stade de Volley-ball, un stade de hand-ball et une piste d'athlétisme.

Le stade de hand-ball est délimité par les points images sur le cercle trigonométrique des solutions sur $[0; 2\pi [$ de l'équation $(E): 1 + 2\sin x.\cos x - 2\cos 2x = 0$, l'unité étant 12 mètres. Pour éviter que la pelouse soit submergée de boue, le conseil a décidé de la daller à l'aide du sable et du ciment : le sable est vendu à 600Frs le seau de 15 litres et un seau peut couvrir un espace de 0,5 m². Un sac de ciment coutant 5 700Frs, peut couvrir $3m^2$ de surface.

Le stade de volley-ball est délimité par trois bornes dans le plan muni du repère orthonormé (O; I; J) représentées par les points E(20; -50); F(75; 25) et G(15; 0), le conseil décide de recouvrir cette surface du gazon synthétique , n mètres carrés de gazon synthétique coute environ 36 400Frs où n est la solution de l'équation $4 + \sqrt{x-2} = x$.

S'agissant de la piste d'athlétisme, elle est délimitée dans le plan autour d'une portion ayant la forme d'un triangle équilatéral ABC de côté 10 m et représentée par l'ensemble des points M tels que

 $15 \le \|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| \le \|\overrightarrow{MA} + 2\overrightarrow{MB} - 3\overrightarrow{MC}\|$. Le conseil désire protéger cette piste en y installant des panneaux publicitaires le long des abords des deux pistes. Deux pieds de panneaux publicitaires permettent de recouvrir 0,15m de long et un pied coute 750Frs.

Tâches:

- 1) Déterminer le budget à prévoir par le conseil pour la construction du stade de hand-ball.
- 2) Déterminer le budget à prévoir par le conseil pour la construction du stade de volley-ball.
- 3) Déterminer le budget à prévoir par le conseil pour embellir la piste d'athlétisme.