MINESEC _ LYCÉE DE GUIDER Département de Mathématiques

Examen: Evaluation N°1 Année scolaire 2021-2022

1pt

Classe: TC

Durée: 3h **Coef**: 7

Epreuve de Mathématiques

<u>Compétences évaluées</u>: Arithmétiques, produit vectoriel, nombres complexes

PARTIE A: EVALUATION DES RESSOURCES / 15,5 points

EXERCICE 1 / 5,5 points

Les questions 1, 2, 3, 4 et 5 sont indépendantes.

a) Montrer que a et b sont premiers entre eux.	0,5pt
b) En déduire a et b sachant que $a < b$ et $PPCM(a, b) = 126$.	1pt

2. a) Résoudre dans
$$\mathbb{Z}^2$$
 l'équation (E) : $9x - 14y = 0$.

b) Résoudre dans
$$\mathbb{Z}$$
 le système (S) :
$$\begin{cases} x \equiv 4[9] \\ x \equiv 5[14] \end{cases}$$
 0,5pt

1 $2n-1$	3.	Déterminer les entiers relatifs n tels que $\frac{n(5n+8)}{2n-1}$ soit un entier relatif.	1pt
---------------	----	---	-----

4. Résoudre dans
$$\mathbb{Z}$$
 l'équation : $x^2 - 3x + 6 \equiv 5[7]$.

5. Determiner le chiffre des unites du nombre
$$A = (3548)^9 \times (2537)^{37}$$
.

EXERCICE 2 / 2 points

Les questions 1 et 2 sont indépendantes.

Soit u, un nombre complexe tel que |u| = 1, $u \ne 1$ et z un nombre complexe quelconque.

- 1. Montrer que $\frac{z-u\bar{z}}{1-u}$ est un nombre réel.
- 2. On considère les nombres complexes $z_1 = \frac{3+2i}{-5+7i}$ et $z_2 = \frac{3-2i}{5+7i}$. Démontrer sans calcul que $z_1 z_2$ est un réel et que $z_1 + z_2$ est un imaginaire pur.

EXERCICE 3 / 4,5 points

L'espace est rapporté à un repère orthonormé direct $(0; \vec{l}, \vec{j}, \vec{k})$. On donne les points A(1;0;1), B(2;2;4), C(1;-1;0) et D(2;1;-1).

- 1. Montrer que les points A, B et C définissent un plan (P) dont on déterminera une équation.
- 2. Démontrer que les points A, B, C et D sont non coplanaires. **0,5pt**
- 3. Calculer l'aire du triangle ABC, puis le volume du tétraèdre ABCD. **1pt**
- 4. Déterminer les réels a, b et c tels que le point O soit le barycentre des points pondérés (A, a); (B, b) et (C, c). 0,75pt
- 5. Soit (Ψ) l'ensemble des points M de l'espace tels que : $4MA^2 MB^2 2MC^2 = -16$.
 - a) Déterminer la nature et les éléments caractéristiques de (Ψ). **0,75pt**
 - b) Démontrer que l'intersection de (Ψ) et (P) est un cercle dont on précisera les éléments caractéristiques. **0,5pt**

EXERCICE 4 / 3,5 points

I-/ Soit à résoudre dans \mathbb{N}^2 l'équation (E): $15x^2 - 7y^2 = 9$.

- 1. Démontrer que dans le système decimal, le dernier chiffre d'un carré est 0, 1, 4, 5, 6 ou 9.
- 2. En déduire que $7y^2 + 9$ n'est pas divisible par 5.

0,5pt

3. Résoudre alors l'équation (E) dans \mathbb{N}^2 .

0,5pt

II-/ Soit le nombre $a_n = 3^{2n} - 1$, tout entier naturel non nul n.

1. Montrer que pour tout entier naturel non nul n, a_n est divisible par 8.

0,5pt

- 2. On considère l'équation (E) : $a_3x + a_2y = 3296$.
 - i) Montrer qu'il existe un couple d'entiers solution de (E)

0,5pt

ii) Résoudre (E) dans \mathbb{Z}^2 .

1pt

PARTIE B: EVALUATION DES COMPETENCES / 4,5 points

La base du **BIR** de Maroua a défini son procédé de codage des données de la façon suivante : <u>Etape 1</u>: à la lettre que l'on veut coder, on associe le nombre n correspondant dans le tableau. <u>Etape 2</u>: on calcule le reste de la division euclidienne de 9n + 5 par 26 et on le note r.

Etape 3: au nombre r, on associe la lettre correspondante dans le tableau.

A	В	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}
13	14	15	16	17	18	19	20	21	22	23	24	25

Cette base du BIR est composée de régiments et chaque régiment a un certain nombre identique de soldat. Lorsque 11 régiments se retrouve pour le repas, il y'a 7 salles occupées et 5 soldats qui n'ont pas de places. Un des soldats, **M. BRAVO** content de la réussite au baccalauréat série C de son fils, lui a promis comme cadeau un voyage pour Yaoundé pour suivre la rencontre d'un match de football au stade Olembé. Une fois à l'agence, le cassier leur dit : « le prix d'un billet de voyage pour Yaoundé est le produit xyz en base 10, où x est solution de l'équation x + y + z = 50 avec $y = \overline{131}^x$ et $z = \overline{101}^x$ (x > 3) ». pour cela, il demande à **M. BRAVO** d'écrire d'abord le produit xyz en base x avant de trouver le prix d'achat de leurs billets de voyage.

<u>Tache 1 :</u> Quel est le noms de code utilisé par le commandant de cette base militaire pour le mot SOLDAT ?

<u>Tache 2</u>: quel est le nombre maximal de soldats par régiment, sachant qu'un régiment a moins de 300 soldats ?

<u>Tache 3 :</u> Quel montant doivent-ils débourser à l'agence pour se rendre à Yaoundé ? 1,5pt

« Travaillez de manière à remporter le prix »

Examinateur: M. NGANSOB NONO Yves. B (PLEG_Maths)