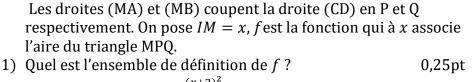
Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun Collège polyvalent de Bepanda Enseignant: chemegni guy M.

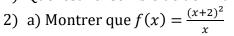
Examen: Probatoire blanc N°1 Série: C session: AVRIL 2020 **Epreuve:** Mathématiques Durée: 3 heures Coefficient: 5

PARTIE A: EVALUATION DES RESSOURCES 15.5 pts

Exercice 1 (5points)

ABCD est un carré du plan tel que AB=2, I est le milieu de [AB], M est un point variable et différent de I sur la demi droite [Iz)perpendiculaire à la droite (AB) et représentée ci-contre : Les droites (MA) et (MB) coupent la droite (CD) en P et Q





0,75pt

b) Etudier les variations de *f*

c) Où faut-il placer M pour que l'aire du triangle MPQ soit minimale? Justifier

0,5pt

- 3) a) Déterminer une fonction affine p et un réel c tel que pour tout $x \in \Box^*$, $f(x) = p(x) + \frac{c}{c}$
 - b) Justifier que la courbe représentative de la fonction f admet une asymptote verticale et une asymptote oblique dont on précisera les équations. 0.5pt
 - c) Construire dans un repère orthonormé la courbe (*C*) représentative de *f*. 0,5pt
- 4) On pose g(x) = f(|x|).
 - a) Déterminer l'ensemble de définition de de *g* puis étudier la parité de *g*. 0,5pt
 - b) Construire dans le repère précédent la courbe (C') représentative de g. 0,75pt

Exercice 2 4.5pts

Dans le plan affine euclidien muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on désigne par (©) le cercle de centre O et de rayon 1. On note I(1,0) ; J(0,1) et K(-1,0). A est le milieu de [OK]. (©')désigne le cercle de centre A passant par J.

- 1) a) Ecrire une équation cartésienne de (©'). (©') rencontre l'axe des abscisses en deux points dont l'un, noté B a une abscisse positive x_B . 0.5pt
- b) Déterminer x_B . 0.5pt

On désigne par C le milieu du segment [OB], la perpendiculaire en C à l'axe des abscisses coupe © en deux points dont l'un, noté M a une ordonnée positive.

On pose $\alpha = (\vec{i}, OM)$.

- a) Calculer $\cos \alpha$ 0.5pt
- b) En déduire $\sin \alpha$, $\cos 2\alpha$ et $\cos 3\alpha$. 2pts
- 3)a) Résoudre dans $]0, \frac{\pi}{2}[$ l'équation $\cos 2x = \cos 3x$. 0.5pt
- b) En déduire la valeur exacte de α 0.5pt

EXERCICE 3 2,5pts

En 2011, on suppose qu'une entreprise forestière dispose dans sa forêt 10000 arbres et que chaque année elle coupe les 5% de ce qui est resté l'année dernière et 50 nouveau arbres poussent chaque année. On pose : A_1 =10000 arbres au $1^{\rm er}$ Janvier 2011 et A_{n+1} le nombre d'arbres que dispose cette entreprise au $1^{\rm er}$ Janvier 2011+n

a) Calculer A ₂ , A ₃ et A ₄	0,5pt
b) Exprimer A_{n+1} en fonction de A_n	0,5pt
2. On pose : $B_n = A_n - 1000$	
a) Montrer que B_n est une suite géométrique .	0,5pt
b) Exprimer B_n puis A_n en fonction de n.	0,5pt
3. Calculer la limite de A_n lorsque n tend vers $+\infty$ puis interpréter le résultat	0,5pt
	2. On pose : $B_n=A_n-1000$ a) Montrer que B_n est une suite géométrique .

Exercice 4: 3,5pts

ABCD est un losange direct de centre O tels ABC et ACD soient des triangles équilatéraux. I et J sont les milieux respectifs des segments [AB] et [BC] et le point E est tel que $\overrightarrow{OC} = \overrightarrow{CE}$; $t = t_{\overrightarrow{OA}}$; $r = R\left(A; \frac{\pi}{3}\right)$; f = rot; S_A et S_B sont des symétriques centrales de centre respectifs A et B.

	de centre respectifs A et B.	
1)	Faire une figure	0,5pt
2)	Déterminer la nature $S_A o S_B$	0,5pt
3)	Déterminer la droite (L) telle que $r = S_{(L)} \circ S_{(AB)}$ puis montrer que $r = S_{(OE)} \circ S_{(L)}$	
4)	a) Déterminer f(0) et f(E).	0,5pt
	b) En déduire que f(C) est le milieu du segment [AD]	0,5pt
	c) Donner une mesure de l'angle $(\widehat{IO},\widehat{IA})$	0,5pt
	d) Préciser la nature et les éléments caractéristiques de f.	0,5pt

EVALUATION DES COMPETENCES (1.5 X3 = 4.5 pts)

ABCD est un quadrilatère convexe. Soit E un point de [AB] et F un point de [AD] tels que $\frac{AE}{AB} = \frac{AF}{AD}$. La droite (Δ), parallèle à (BC) passant par E, et la droite (Δ ') parallèle à (CD) passant par F se coupe en O.

On considère un triangle ABC. I milieu de [BC] et G le point de [AI] tel que AG = $\frac{3}{4}$ AI. On désigne par K le point d'intersection des droites (AB) et (GC).

ABCD est un parallélogramme ; P le point définie par $\overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB}$; Q est le symétrique du milieu de [AD] par rapport à A.

Tache1 : Démontrer que les points P ; Q ; C sont alignes en utilisant le repère (A ; \overrightarrow{AD} ; \overrightarrow{AB})

 $Tache 2: D\'{e}montrer \ que \ les \ points \ K \ ; \ G \ ; \ C \ sont \ align\'{e}s$

Tache3: Démontrer que les points A; O; C sont alignes